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Abstract

Systemdynamics is amethodology for improving the understanding andmanagement of complex systems.

Oen these complex systems are large, and require a simulation model with a significant level of detail to

represent them adequately. For large models like these, applying techniques and concepts from object-

oriented soware development can help manage incidental complexity – the complexity that arises from

the implementation of themodel, rather than from the system itself. is thesis introduces object-oriented

concepts and techniques, like polymorphism, encapsulation, inheritance and interfaces and applies them

to traditional stock and flow modeling. Finally a national model is developed with these object-oriented

modeling techniques to explore how they influence the modeling process.
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Chapter 1

Introduction

Systemdynamics is amethodology for improving the understanding andmanagement of complex systems.

What sets it apart from other methodologies like systems thinking is the focus system dynamics has on

computer simulation, on quantifying and rigorously testing assumptions and understanding. is puts

the simulation model at the center of the system dynamics approach. ese models are simplified versions

of reality where we can test our assumptions and policies. At times, however, these simplified versions of

reality can become quite complex themselves.

Approaching dynamic problems that require a significant level of detail, such as those that might be re-

quired when modeling a large business organization or national economy, puts a lower bounds on the

complexity of the model. A simple model may be easy to understand, but if it cannot match the refer-

encemode it is not very helpful in understanding the dynamic problem at hand. Additionally, as Forrester

[1989] notes, complex models more closely match reality, and consequently are less subject to criticisms

of important pieces being le out.

In the beginning, system dynamics modeling was a multiple-medium exercise [Morecro, 1982]. e

modeling process started by sketching out stock and flow diagrams of the problem. Once the structure

was decided upon, equations would be entered into a computer in the DYNAMO simulation language.

is was an iterative process until both the stock and flow structure and equation structure matched the
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reference modes of behavior, or otherwise addresses the dynamic problem. A later development to the

modeling process was adding causal loop diagrams to papers and reports to aid in the articulation of the

major feedback loops of a model. ese causal loop diagrams are oen the “distillation of understanding

which may have taken months or years to achieve” [Morecro, 1982].

In the mid-1980s, relatively inexpensive personal computers with graphical user interfaces were becoming

widely available. e Macintosh, followed by the IBM PC with Windows, were making computing ac-

cessible in a whole new way. is encouraged and enabled graphical modeling soware to be developed

which combined model layout/sketching with equation editing.

1.1 Managing Complexity

Subsystem diagrams and causal loop diagrams are two approaches for managing the complexity in pre-

senting models to both other system dynamicists and clients. Some system dynamics tools like iink and

Powersim support hierarchical modeling, allowing you to nest models in much the same way subsystem

diagrams present structure.

Despite this, many prominent largemodels likeC-ROADS andreshold 21 are still built flatly using just

stock and flow structures. Building sophisticated models in this manner is difficult, and can cause diffi-

culty communicatingmodel results [Baker andMullen, 2000]. In largemodels, there is a lot of complexity

inherent in the dynamics of the problem. Large flat models introduce incidental complexity, complexity

that arise from the medium in which we are trying to solve the problem [Fogus, 2011]. In this case, cre-

ating a several thousand equation stock and flow model imposes a lot of work on the modeler trying to

understand how pieces interact. Supplementary tools like causal tracing can help, but they don’t cancel

out the increase in complexity from having a flat model.

Soware developers found themselves in a similar situation in the 80s and 90s. Programs were getting

larger and more complex. When once a text-based program would suffice, users were beginning to expect

feature-rich graphical applications. e standard programming languages of the time, such as C, made
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easy a sprawling, hard-to-maintain style of program that was ill-suited to this new soware market.

A number of different programming paradigms were available to help manage complexity, such as logical

and functional programming, but languages based on the object-oriented paradigmgained andhavemain-

tained dominance in the soware development community since themid-1990s [TIOBE, 2011]. While it

has its roots atMIT in the 1950s, the object-orientated paradigmwas formalized and popularized through

the development of the Simula language at theUniversity of Oslo [Dahl andNygaard, 1967]. In brief, the

“object” in object-oriented programming is the grouping of data together with methods, methods being

defined as the relevant program structure (code) whose behavior depends on the associated data. Simula

was the main influence in the development of C++, which itself was the main influence on the develop-

ment of Java; Java and C++ are the two most popular object-oriented programming languages. In 2011,

the majority of the programming languages used were object-oriented [TIOBE, 2011].

Object orientation has proven to be the most popular conceptual amework used to manage complexity in

soware development. is raises the question: can object-oriented concepts and techniques be applied to system

dynamics to help manage model complexity.

1.2 Overview

Chapter 2 defines definitions necessary for the introduction of object-orientation, such as those for types,

classes and objects. e next chapter, 3, introduces object-oriented concepts, such as polymorphism, en-

capsulation and inheritance, along with specific techniques – applications of object-oriented concepts in

specific programming languages. Chapter 4 reviews previous applications of object-oriented principles

and hierarchical modeling in system dynamics, such as DYNAMO macros and subsystem diagrams.

With a firmunderstanding of object-oriented approaches tomanaging complexity alongwith an introduc-

tion to prior work in system dynamics, chapter 5 describes this approach in applying object-orientation to

system dynamics. Chapter 6 walks through applying this approach to a large modeling project. Finally,

chapter 7 discusses the utility of this paradigm, some interesting options it opens up for modeling tools,

10



and discusses future directions of this research.
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Chapter 2

Definitions

Before digging into the concepts of the object-oriented paradigm, it is necessary to define anumber of basic

terms and concepts, such as what “objects” are. is chapter starts by exploring types and type systems.

Once types are defined, classes of objects are introduced, followed by objects themselves.

2.1 Types

A type is classification of a given piece of data. At the lowest level, all data on a computer ismade up of ones

and zeroes; types give context to this binary data and define the operations that are allowed on any given

value or collection of values. When it comes down to it, types are what allow programs to turn commands

you give them, like “add these two things together”, into a set of instructions the computer understands.

Most languages have types to distinguish between things like sequences of text (character strings), integers

(whole numbers), booleans and floating-point (real) numbers. ese are known as primitive types, types

that represent the basic building blocks in a language. Consider the following example:

1 result = a + b

Listing 2.1: ”Addition”
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For the computer to know what to do here, it must know the types of a and b. For example, if a and b

represent the strings “system ” and “dynamics”, the result might be the string “system dynamics”. However,

if a and b are integers, the result would be the addition of a and b. Similarly, if a and b are floating point

numbers, the result is still the addition of the two numbers, but the computer has to use a differentmethod

for the addition. Or, if the types of a and b aren’t compatible it could represent an error. For example, many

programming languages don’t allow adding text and a floating-point number, because that operation is

ambiguous – the intent could be to add the text-representation of the number to the string, but its equally

likely that it represents a logical error.

Usually, the programming system knows what the type of an object is by its declaration. In visual system

dynamics tools, when creating a variable the user also declares its type. is happens, for example, by draw-

ing a stock symbol, or the flow symbol, or telling the program that the auxiliary variable has an associated

lookup table. In most programming systems things are analogous, the fist time you use a variable you have

to declare its name and type.

In addition to types like the primitives above, there are composite types. In many languages, composite

types are known as classes. As their name would suggest they are aggregations comprised of (usually)

named primitive and other composite types. An example would be a very coarse approximation of a car:

1 class Car {

2 int numberOfDoors;

3 Engine engine;

4 Wheel[] wheels;

5 }

Listing 2.2: ”Car”

is type defines how we represent cars. In this representation, we keep track of three pieces of data: a

simple integer counter of doors, a single composite object called the engine, and an array (noted by the

”[]”) of wheel objects. ese three pieces of data are named for what they represent: numberOfDoors,

engine, and wheels.
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In short, types define the layout of and operations possible on a given piece of data. Historically, pro-

gramming languages specified a fix set of types. ese types (like integers, strings, booleans, and complex

structure types) were defined in the language specification, and your code could only use values that con-

formed to those types. Fortran didn’t support user-specified types until Fortran 90, which was released

over 30 years aer the initial version [Wikipedia, 2011]. e ability to specify new first-class types, com-

monly called classes, is key to object-oriented programming.

2.2 Classes

A class is a user-defined composite type like the Car example in listing 2.2 above. All classes are types, but

not all types are classes. It specifies a collection of data along with a set of methods that are used to access

andmanipulate the data. It is a groupof attributes andbehaviors. Amethod is a function (or subroutine, or

procedure) that is associated with a particular class. Imagine you wanted to create a simple representation

of a warehouse that holds widgets:

1 class Warehouse {

2 int inventory; // number of widgets on hand

3

4 // lets people view, but not modify, the current inventory level

5 public int getInventorySize() {

6 return inventory;

7 }

8

9 // add a number of widgets to our inventory, but make sure the

10 // number of widgets makes sense (is positive)

11 public void stock(int count) {

12 if (count > 0) {

13 inventory += number;

14 }

15 }

16

17 // fulfill a customers order, returns the number of widgets available

18 public int order(int count) {
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19 // make sure we have a big enough inventory to fill the order

20 if (count > 0 \&\& count < inventory) {

21 inventory -= count;

22 } else if (count >= inventory) {

23 // if we don’t, give the customer all of our inventory

24 number = inventory;

25 inventory = 0;

26 } else {

27 // if we asked for an order of negative widgets, which

28 // doesn’t make sense, so don’t do anything

29 number = 0;

30 }

31 return number;

32 }

33 }

Listing 2.3: ”Warehouse class example 1”

In this example, the factory’s inventory can only be changed by calling the stock() method to add new

items, or by removing items when an order() comes in. e most complicated part is order fulfillment. It

is important to make sure that inventory never goes negative. Both stock() and order() also contain logic

to make sure that the factory handles negative order values correctly. All of this could be accomplished

by simply having an integer containing the inventory somewhere in your code program. In this case, the

benefit of having a Factory class is that the code for checking extreme values and error conditions only has

be written once, in one place, and everywhere you use the factory benefits.

2.3 Objects

In the real world, you encounter many individual objects (things) that are all of the same kind [Campione

et al., 2000]. Take a flock of geese as an example. ese bird objects in the flock are instances of the class

Bird (or perhaps of a more descriptive class like Geese). Because these individual goose instances share the

same class, you can interact with any bird in the same way, even though the details of individuals may vary.

You can command the bird to fly(), perform a bird call(), perhaps even mate().
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An object is a collection of state and methods to interact with that state. Each object is an instance of a

particular class, which describes the types of state and methods available.

e relationship between an object and its class is somewhat analogous to that of a simulation run and a

systemdynamicsmodel. emodel defines the variables and equations of a system, but except for constants

and tables, doesn’t keep track of data. e model is strictly declarative. e simulation run is an instance

of a model, one of potentially many. Each run contains the actual values of variables of interest. Even if

runs started out with different initial values or had different decisions executed during the run, the set of

available variables doesn’t change, and you access the data in the same way.
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Chapter 3

Object orientation

ere is a notable distinction between object-oriented concepts and object-oriented techniques [Myrtveit,

2000]. e main concepts of object oriented programming can be implemented in a number of different

ways, making various techniques more or less useful. Two well-known object-oriented programming lan-

guages are Java and Ruby. ey both implement the concepts we’ll talk about below, but their different

approaches lead to languages that feel and act significantly different [Ruby, 2011, Tate, 2006].

ere are 3 coreobject-oriented concepts: encapsulation, inheritance/delegation, andpolymorphism(also

known as dynamic dispatch) [Scott, 2000].

3.1 Encapsulation

Encapsulation is the act of restricting access to some or all of the state of an object from other objects.

e canonical way this is done is by restricting access to the state of an object to the methods associated

with that class. e warehouse example in listing 2.3 clearly illustrates encapsulation. e only way to get

information about, or to change, the inventory of widgets is through the methods defined by the class.

One of the major benefits of encapsulation is that it hides the internal operations of your class behind a
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consistent interface. is enables the programmer to restructure how the class works without having to

make changes throughout the projects source code in every place the class is currently being used. For

example, we could decide that our representation of a warehouse is too simplistic. In the real world, there

is a delay between receiving a new shipment of widgets and having them available for customers. One way

to restructure the class would be:

1 class Warehouse {

2 // inventory of widgets, with a 1 day delay between when items are

3 // received and when they’re available to fill orders

4 Queue inventory = new Queue(1, TimeUnit.DAY);

5

6 // lets people view, but not modify, the current level of

7 // available inventory

8 public int getInventorySize() {

9 return inventory.size();

10 }

11

12 // add a number of widgets to our inventory, but make sure the

13 // number of widgets makes sense (is positive)

14 public void stock(int count) {

15 inventory.add(count);

16 }

17

18 // fulfill a customers order, returns the number of widgets available

19 public int order(int count) {

20 return inventory.get(count);

21 }

22 }

Listing 3.1: ”Warehouse class example 2”

Here we’ve replaced the integer counter for inventory with an object that represents a time-delayed queue

of inventory. We’ve specified that this queue should always have a 1 day delay between when we add new

inventory and when its available to fill orders. All 3 methods of our Warehouse class, getInventorySize(),

stock(), and order() now all simply call analogous methods on the inventory queue. is example is also

much shorter, because we assume that the ueue class now takes care of the error checking.

18



Places where the original Warehouse class are used won’t need to be changed to take advantage of the

more realistic behavior of this updatedWarehouse, because they weren’t allowed to depend on the internal

implementation details of the original formulation. If the program had been allowed to directly access the

inventory counter, adding a delay would have been more work, with more places to make mistakes.

3.2 Inheritance and delegation

Inheritance and delegation are designed to enable the sharing of code and behavior. Having identical or

nearly-identical code in multiple parts of the program’s codebase places a burden on the developer when-

ever that structure needs to change. Inheritance captures the relationships between objects in a tree struc-

ture, known as a type hierarchy. Different types of bicycles share a majority of the same characteristics and

behavior, usually differing in a few small areas. With inheritance, you can define most of the behavior and

state of the bicycle in a single class, any classes that subclass (inherit from) this bicycle class will be able to

make use of the bicycles methods.

Figure 3.1: A hierarchy of bicycle types [Zakhour et al., 2006]

Figure 3.1 shows the class hierarchy for the Bicycle and 3 of its subclasses. Inheritance codifies the “is-a” re-
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lationships between classes of objects. A tandembike is a kind of bicycle, same for bothmountain and road

bikes. Subclasses can override, or redefine,methods defined inBicycle that don’t fit their needs, keeping the

rest. ey can also add additionalmethods. e tandembikemight add amethod getNumberOfRiders(),

allowing you to find out how many people are currently riding the tandem bicycle, which is not necessary

for the other types of bicycles. Similarly, the mountain bike will probably have to define its own behavior

for changing gears, as mountain bikes typically have more gears at a lower gear ratio than other bicycles.

1 class Bicycle {

2 public void changeGearTo(int newGear) {

3 // ...

4 }

5 }

6

7 class TandemBicycle extends Bicycle {

8 int riders;

9 public int getNumberOfRiders() {

10 return riders;

11 }

12 }

13

14 class MountainBicycle extends Bicycle {

15 public void changeGearTo(int newGear) {

16 // ...

17 }

18 }

Listing 3.2: ”Bicycles 1”

3.2.1 Delegation

Delegation is an alternate way of managing complexity by sharing code and behavior. While inheritance

captures is-a relationships, delegation promotes code use by enabling composition, known as has-a rela-

tionships. Going back to our bicycle diagram, with delegation, the particular types of bicycles, likeMoun-

tainBicycles and RoadBicycles wouldn’t need to know the details of their particular gearing, they would
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just delegate the responsibility for handling the message off to a separate object of type DriveChain. So

simply changing the type of the Bicycle’s DriveChain, as in listing 3.3 would cause the Bicycle to exhibit

different behavior, without the need to change or override the Bicycles methods.

1 class Bicycle {

2 DriveChain driveChain = new StandardDriveChain();

3 public void changeGearTo(int newGear) {

4 driveChain.changeGearTo(newGear);

5 }

6 }

7

8 class MountainBicycle extends Bicycle {

9 DriveChain driveChain = new ExtraGearsDriveChain();

10

11 // no need to override changeGearTo, because all MountianBicycle’s

12 // driveChain objects Bicycle’s method will use the ExtraGearsDriveTrain

13 }

Listing 3.3: ”Bicycles 2”

Composition

Composition is one way of implementing delegation. Listing 3.3 was an example of composition in Java;

any time the changeGearsTo()method on a bicycle objectwas called, it would simply forward themethod’s

argument to an identically named method on its driveTrain object, returning the driveTrain’s result to the

caller. is works well, but can get cumbersome for larger objects. Every time a method call needs to be

delegated to a particular component, a proxy method needs to created on the parent object, like the one

defined in listing 3.3 on line 3 for Bicycle.

e Go language has an interesting technique to make composition easier called type embedding. Rather

than require proxymethods for everymethod a class intends to forward to a component, if a class does not

implement a given method but an embedded type does, the method is directly called on the embedded

type. In Go, we could rewrite listing 3.3, slightly reformulated, as follows:
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1 type Drivechain interface {

2 ShiftUp()

3 ShiftDown()

4 }

5

6 type StandardDrivechain {}

7 func (*StandardDrivechain) ShiftUp() {

8 // check limits and shift to higher gear

9 }

10 func (*StandardDrivechain) ShiftDown() {

11 // check limits and shift to lower gear

12 }

13

14 type MountainDrivechain {}

15 func (*MountainDrivechain) ShiftUp() {

16 // check limits and shift to higher gear

17 }

18 func (*MountainDrivechain) ShiftDown() {

19 // check limits and shift to lower gear

20 }

21

22 type Bicycle {

23 Drivechain

24 Frame

25 Brakes

26 tires [2]Tire // an array of 2 tires

27 }

28

29 func NewRoadBicycle() *Bicycle {

30 return \&Bicycle{StandardDrivechain{}}

31 }

32

33 func NewMountainBicycle() *Bicycle {

34 return \&Bicycle{MountainDrivechain{}}

35 }

36

37 func main() {

38 bike1 := NewRoadBicycle()

39 bike2 := NewMountainBicycle()
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40 }

Listing 3.4: ”Bicycles 3”

In the main function at the end of listing 3.4, two bicycles objects are created, one a mountain bike and

the other a road bike. When you call bike1.ShiUp(), bike1’s StandardDrivetrain instance’s ShiUp()

method is directly called. Composing objects like this takes some getting use to, but ends up being a very

productive programming style [Pike, 2010].

3.3 Polymorphism

Polymorphism is the ability to use classes of disparate objects in a similar way. When a driver gets into an

automobile with an automatic transmission, they’re presented with a familiar interface, like that seen in

figure 3.2. ere is a steering wheel to change the direction of the car, an accelerator pedal on the right to

increase the automobile’s speed, and a break pedal on the le to decrease the speed.

steering
wheel

brake gas

Figure 3.2: Generic interface of an automobile with an automatic transmission

Once a driver masters driving their car, by extension they have gained the ability to drive the majority of

automobiles with automatic transmissions. Standard cars, large American pickup trucks, even cars with

fully-electric drive systems all present the same interface to the driver, even if they have exceedingly differ-

ent form factors or inner workings. Figure 3.3 shows the interiors of the Ford F350 pickup truck and the
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Chevy volt electric car. e F350 is a two-meter tall, 6.6-meter long truck that can tow close to 7 metric

tons, designed for serious work. In comparison, the Chevy volt is a plug-in electric car with an electric

powertrain designed for relatively short commutes and trips around town. e gas pedal in traditional au-

tomobiles is connected directly to a wire controlling fuel and air supply to the engine. In the Volt, the gas

pedal simply provides a signal to the car’s main computer. Despite both vehicles having different purposes

andmechanics, they both give the operator the same interface to driving that they’re use to; both the F350

and Volt classes of automobiles are polymorphic with respect to driving.

(a) Chevy Volt interior (b) F350 pickup truck interior

Figure 3.3: Interiors of automobiles with different mechanics implementing the same driving interface
[Lloyd, 2008, Gillogly, 2009]

3.3.1 Subclass polymorphism

Different subclasses can be used as if they were their parent class. In the bicycle examples in listing 3.2 and

listing 3.3, tandems and mountain bicycles could be used as if they were ordinary bicycles. Anywhere a

generic bicycle is called for, a more specific type of bicycle will do just fine.

3.3.2 Interfaces

Interfaces, sometimes called protocols, specify a set of behavior, a contract, that classes can choose to im-

plement. Any object whose class implements a given interface can be used interchangeably. Interfaces give

you the same type of polymorphism as class inheritance does, but without needing objects to be descen-

dants of one another in a type tree. Interfaces are useful when the program cares more about how you use
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objects, rather than how those objects are related to each other.

Interfaces are somewhat analogous to telephone jacks. e brand or details of the telephone are not im-

portant, as long as the cord for the telephone fits in the wall jack and provides the telephone jack with

the right analog data. e phone could be a cordless phone, a wall-mounted phone, or even a computer

modem. All that matters to the telephone company’s system is that it the cord to the phone physically fits

in the wall jack, and the data has the right form. It is not important to the telephone company if the signal

from a house is coming from the basement, or from a cordless phone in the yard. Similarly, a family can

go to the store and buy a replacement telephone without needing to call the telephone company and let

them know that the physical telephone is changing.

ere are timeswhen the telephonedoesn’t provide the correct interface. Several companies, such asCisco,

now sell voice-over-IP (VOIP) telephones, which act more like computers than phones. e connector

used to hook them up to a phone system is physically different – it is designed to be plugged into a data

network, not an analog telephone system. Old rotary telephones have the correct socket to connect them

to the telephone system, but the method they use to dial numbers (the pulse method) is no longer in use,

andmay not work on some telephone systems even though they can physically be plugged into the system.

is iswhat interfaces provide for systemdynamics. An interface allows you to specify the variables needed

(fit of the jack), along with information about the type of data (flows vs auxiliary data and units, for exam-

ple).

Interfaces allow two models to interact without one needing to know the exact details of the other. A na-

tional model does not need to know the details of the population replacement telephone without needing

to call the telephone company and let them know that the physical telephone is changing.

ere are timeswhen the telephonedoesn’t provide the correct interface. Several companies, such asCisco,

now sell voice-over-IP (VOIP) telephones, which act more like computers than phones. e connector

used to hook them up to a phone system is physically different – it is designed to be plugged into a data

network, not an analog telephone system. Old rotary telephones have the correct socket to connect them
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to the telephone system, but the method they use to dial numbers (the pulse method) is no longer in use,

andmay not work on some telephone systems even though they can physically be plugged into the system.

is iswhat interfaces provide for systemdynamics. An interface allows you to specify the variables needed

(fit of the jack), along with information about the type of data (flows vs auxiliary data and units, for exam-

ple).

Interfaces allow two models to interact without one needing to know the exact details of the other. A

national model does not need to know the details of the population submodel, it only needs access to

indicators such as total population and labor size while providing the submodel with access to variables

such as average life expectancy and fertility rate needed to close the loop. Clearly defining the interface to

the population submodel makes it much less complicated to change the structure of the populationmodel

later, even if that means substituting a completely different population model formulation.

1 class Bicycle implements Vehicle {

2 public void turn(float radians) {

3 // twist handlebars

4 }

5 public void accelerate(float rate) {

6 // downshift, stand up on pedals if rate is positive

7 }

8 public float getSpeed() {

9 // return information about our current speed

10 }

11 }

12

13 class Skateboard implements Vehicle {

14 public void turn(float radians) {

15 // lean left or right

16 }

17 public void accelerate(float rate) {

18 // kick with your feet more if rate is positive

19 }

20 public float getSpeed() {

21 // return information about our current speed

22 }
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23 }

24

25 interface Vehicle {

26 public void turn(float radians);

27 public void accelerate(float rate);

28 public float getSpeed();

29 }

Listing 3.5: ”Interfaces 1”

In listing 3.5, both the Skateboard and the Bicycle classes implement the Vehicle interface. If you had an

agent based simulation of how youth move around in a community, you could model a person as:

1 class Teenager {

2 Vehicle modeOfTransportation;

3

4 // rest of the details that define teenagers go here.

5 }

Listing 3.6: ”Teenager”

e agent based model could construct a number of instances of the teenager, randomly giving each

teenager object either a Skateboard or a Bicycle as that teenager’s modeOfTransportation. e teenager

(in this very simplified model) doesn’t care if his modeOfTransportation is a skateboard or a bicycle, all

he cares is that he can use it to get around town and interact with other agents.

e example listings 3.5 and 3.6 above were written in the Java programming language. In Java, each class

has to explicitly enumerate the interfaces that it supports. While this works, it is not the only way to

implement interfaces.

3.3.3 Go

e programming language Go includes a unique implementation of interfaces. In most languages that

support interfaces, like Java and C#, each class must explicitly enumerate the interfaces it supports. In Go,
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any type which supports the set of methods listed in an interface automatically implements the interface.

In Go, our Vehicle example from listings 3.5 and 3.6 would look like:

1 type Bicycle struct{}

2 func (*Bicycle) Turn(radians float32) {

3 // twist handlebars

4 }

5 func (*Bicycle) Accelerate(rate float32) {

6 // downshift, stand up on pedals if rate is positive

7 }

8

9 func (*Bicycle) GetSpeed() float32 {

10 // return information about our current speed

11 }

12

13 type Skateboard struct{}

14 func (*Skateboard) Turn(radians float32) {

15 // lean left or right

16 }

17 func (*Skateboard) Accelerate(rate float32) {

18 // kick with your feet more if rate is positive

19 }

20 func (*Skateboard) GetSpeed() float32 {

21 // return information about our current speed

22 }

23

24 type Vehicle interface {

25 Turn(radians float32)

26 Accelerate(rate float32)

27 GetSpeed() float32

28 }

29

30 type Teenager struct {

31 modeOfTransportation Vehicle

32 // rest of the details that define teenagers go here.

33 }

Listing 3.7: ”Interfaces 2”
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eadvantage ofGo’s approach is that you can create and use new interfaces without having tomodify any

existing types to work with them. If you have existing types that have already implemented the methods

you list in your interface, you can immediately use them without modification where ever that interface is

called for.
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Chapter 4

Previous approaches in SD

ere is a long history of attempts to encourage encapsulation and hierarchy into the system dynamics

modeling process, as well as several experiments and implementations that are explicitly object-oriented.

DYNAMO, the first system dynamics modeling language1, had built-in functions that could be used to

generate common model structures, like smooth and delay3 [Richardson and Pugh, 1988]. In addition to

common built in functions, it allowedmodelers to define their ownmacros, which were called like regular

functions, but computed their values based onDYNAMOstatements. In the 1970s, subsystem and policy

diagramswere introduced tohelpmanage complexitywhen applying the production sector of theNational

Economic Model to specific business applications and to aid in teaching the Industrial Dynamics model

[Morecro, 1982].

Recently,MagneMyrtviet has publishedmuch research about how to apply object-oriented programming

to system dynamics, including information hiding and polymorphism. Jim Hines has published work on

amodel construction approach based around successive rounds of replacingmore general model structure

withmore specific structure. Finally, several systemdynamicsmodeling tools have various levels of support

for hierarchical and modular modeling.

1ere was a program called SIMPLE which predated DYNAMO, but it was not considered complete and did not see
widespread use [Haigh, 2005].
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4.0.4 DYNAMO Macros

Modelers equently discover that they must repeat a pattern of statements or expressions a num-
ber of different places in a model. e ability to devise a shorthand notation for such repeated
structures would save the modeler time while constructing the model. Model readers would also
benefit by quickly being able to master the structure once and quickly recognize it wherever it is
used. – Richardson and Pugh [1988]

e DYNAMO language included built-in support for macros. Macros define a mathematical operation

or a commonly used set of model structure. Once defined, the macro can be used elsewhere in the model.

Defining macros is analogous to defining a class in an object-oriented programming language. You can

define an arbitrary number of stocks and auxiliary variables in the macro to use as intermediate variables

in the formulation of the return value. Every time the macro is used (which is analogous to class instan-

tiation) private, hidden copies of those variables are created and added to the model structure. Each use

of the macro gets its own copies of the variables. Listing 4.1 shows the implementation of DELAY1 in

DYNAMO2.

1 MACRO DELAY1(IN,DELAY)

2 A DELAY1=$LV/DELAY

3 L $LV.K=$LV.J+DT*(IN.JK-DELAY1.J)

4 N $LV=DELAY*IN

5 MEND

Listing 4.1: DYNAMO DELAY1 macro [Richardson and Pugh, 1988]

In macro definitions, variables whose name started with a dollar sign were private to instances of that

macro, such as $LV in listing 4.1. e value of the macro was determined by the equation of a variable with

the macro name, DELAY1 in this case.

Along with this macro support came a number of built-in functions to encapsulate common model struc-

ture. As we saw in listing 4.1, these functions (like the DELAYs and SMOOTH) were implemented as

2In DYNAMO, spaces are not allowed in variable definitions, making the formulations harder to read than necessary.
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macros [Richardson and Pugh, 1988]. Rather than having to create 3 stocks and define their inflows and

outflows every time a 3rd order exponential delay is needed, theDELAY3 functionwas available be used to

the same effect. is decreasedmodel complexity by reducing the number of equations in themodel (along

with the chance for typos), and explicitly naming interesting structures, like SMOOTH and RAMP.

4.0.5 Subsystem and policy diagrams

In the early years of system dynamics, the only diagrams used to convey the structure of models were stock

and flow diagrams [Morecro, 1982]. Forrester’s Industrial Dynamics doesn’t include any visual overview

of model structure, it simply has a collection of individual stock and flow diagrams representing different

pieces of the model. Using causal loop diagrams (CLDs) to convey the dominant feedback loops in a

model first appears in Forrester [1968]. Morecro notes that the causal loop diagram represents not the

conceptual origin of the model, but a refined product of the modeling process [Morecro, 1982]; CLDs

are used to give a less complex, less detailed overview of parts of the model considered important.

Toovercome certainweaknesses of causal loopdiagrams andprovide a high level viewof themodel that can

be used during model construction, subsystem and policy diagrams were introduced [Morecro, 1982].

Subsystem diagrams show major subsystems, such as organizational divisions in a social or industrial sys-

tem.

Figure 4.2 is a subsystem model of a manufacturing and retailing system. It shows the three main subsys-

tems of the model, retail, production and shipping control, and labor procurement, along with the feed-

back loops and material flows between them. e details of these three subsystems would all be defined in

separate subsystem or policy structure diagrams.

Subsystem diagrams like figure 4.2 provide a similar view of themajor feedback loops of a model, but have

the advantage that they can be used throughout the modeling process, and are especially valuable at the

start. As Morecro notes, “policy diagram stands in a natural hierarchical relationship above [equation]

formulation”.
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Figure 4.1: A subsystem diagram representing manufacturing and retailing, figure 3 from Morecro
[1982]

is view of subsystems fits cleanly into an object-oriented paradigm. e behavior of different parts of

the model is cleanly delegated to more specialized sub-models.

Subsystem and policy structure diagrams were used in introductory courses at MIT Sloan with the Indus-

trial Dynamics model [Morecro, 1979]. Corporate systems were broken down into component func-

tional areas, such as production control, labor procurement, pricing and marketing. Students commented

favorably on the approach.

Figure 4.2 shows a policy structure diagram of a marketing system. In it, values from other subsystems are

used, along with values endogenous to the marketing subsystem, as inputs to policies. e value of these

policies are used both in the formulation of other policies, although they could also be used directly to con-

trol the rates of flows. Policy structure diagrams put the focus on the decision-making process by ‘hiding’

the details of the decisions inside policies, which would be represented in another diagram. Interestingly

they also show different levels of abstraction in the same diagram; figure 4.2 has policies and subsystems,

which themselves potentially contain additional policies or subsystems, alongside traditional stocks and

flows.
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Figure 4.2: A policy structure diagram of a market subsystem, figure 6 from Morecro [1982]

4.0.6 Object-oriented extensions to system dynamics

Magne Myrtveit has written extensively about how to extend system dynamics with object oriented con-

cepts. Object Oriented Extensions to System Dynamics [Myrtveit, 2000] lays out one possible way to

approach system dynamics modeling with an object-oriented paradigm.

Components are defined as a pieces of model structure which may be used as the building-blocks of other

components. Components may specify interfaces which define the pieces of their structure that are avail-

able to other parts of the model. Any two components which identical interfaces may be interchanged,

allowing for polymorphism.

A key benefit of this component-based object-oriented approach is that it would allow collections of

domain-specific building blocks to be assembled. ese collections would enable faster, more modular

model development. ey would also enable a division of labor between the component-modeler and the

integration-modeler.

Sockets and plugs are introduced as a way to simplify wiring together components into a cohesive model.
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Sockets and plugs have particular signatures, and only a plug with a matching signature may be connected

to a socket. e goal is to allow non-technical users to create models by connecting ready-made compo-

nents.

4.0.7 Construction through replacement

An alternative take on hierarchical modeling is offered in Construction rough Replacement by Hines

et al. [2011]. In it, a hierarchical classification of common system dynamics model structure is developed.

is classification starts off with an unspecific SD molecule, and works its way toward more complicated

structures such as bathtub models and aging chains. With the hierarchy constructed, it is used to allow

users to quickly navigate and find the structure they want, which is copied into the current model. is

is similar to how macros in DYNAMO create structure behind the scenes, only here it happens explicitly.

Once a new piece of structure is in the current diagram, it can be renamed to match how it is being used.

4.0.8 Visual modeling tools

Several existing visual modeling tools have support for hierarchical modeling. iSee’s Stella and iink

products has the concept of modules, which are containers for lower level model structure and the basis

for hierarchical modeling. Powersim supports submodels, which are containers for child variables. A key

difference between submodels and modules is that submodels support restricting the visibility of child

variables – this is the object-oriented concept of encapsulation.
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Chapter 5

Methods

ere are a variety of object-oriented programming techniques and concepts that could be applied to sys-

tem dynamics. e approach described here aims to minimize the incidental complexity that arises when

modeling moderate to large systems while providing a familiar visual system dynamics environment. e

new symbols and visual syntax presented here is summarized in appendix A.

In 2011, almost all system dynamics models are created in visual modeling programs1. is paper intro-

duces both extensions to the traditional system dynamics diagrams to enable object-oriented techniques,

along with a clean, concise textual representation of the object oriented models.

In largemodels, its oen necessary to look at the equation view of themodel for verification or debugging;

having an easy to navigate text-based format for this is an asset. It is similarly beneficial when publishing

model results to have a clear and concise textual representation of model structure. is textual language

is called Boosd2.
1With the exception of some models on the Forio online simulation platforms
2Boosd (written with a single initial capital) was initially an acronym for Bergen Object-Oriented System Dynamics
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5.1 Vocabulary

In this approach, the basic unit of aggregation is known as a model. Stocks, flows, auxiliary variables and

tables are what is known as primitive types, they are the atoms which are combined to form molecules

(models). Primitive types cannot contain any child variables, like a model can. A variable is a symbolic

name, a placeholder, for either the result of an equation or a model instance.

Models are alternatively called submodels, sectors, model classes, classes, and policy structure diagrams

when these alternative titles are less ambiguous. ey all refer to the same singular concept (although

policy structures may have a distinct visual representation).

5.1.1 Instances vs. Models

edistinction between an instance of amodel and themodel’s definition, as described in chapter 2 is very

important. It is not new, as the concept applies toDynamomacros and built-in function as well, but being

comfortable with the concept is key to this object oriented approach.

5.2 Projects

A system dynamics modeling project typically results in the creation of a model, reports on the structure

and behavior of the model, and potentially a management flight simulator. With an object oriented ap-

proach, the creation of that final simulation model may result in the creation of numerous ‘sub’-models.

Accordingly, the approach described here structures things in terms of ‘modeling projects’ rather than

‘models’.

Amodeling project can be classified as either a ’library’ or ’simulation’ project. A simulation project defines

a model named ‘main’ along with any supplementary models developed in the course of the project. For

example, themodel of a firmmay have submodels for retail, production and labor. emainmodel would

contain an instance of each of these models with the necessary feedback loops connected between them.
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If the modeler followed the conventions in ?, the production model would be a policy structure diagram

composed of several stocks, along with models representing each major policy decision involved in the

production process.

A library project contains the definitions of a number of models, but doesn’t contain a main model. A

library is useful for a modeler, modeling team, or larger organization as a way to aggregate and distribute

models representing their collective modeling experience and wisdom. Model libraries can easily be im-

ported into newprojects, saving themodeler fromhaving to re-implement common structure in every new

modeling project. e standard structures provided by a modeling tool can be thought of as belonging to

a single library project.

5.3 Models

Model definitions are how all models and submodels are specified. Where it is more readable, this paper

will use the object-oriented terminology, where models are referred to as classes, and instances of models

as objects.

Figure 5.1 shows the definition of a bathtub model with no inflow and a single outflow. In Boosd, type

names come aer the variable names. is is primarily done to improve readability; when skimming

through a large model it is easier to read ‘bathtub stock’ than ‘stock bathtub’. If a variable doesn’t de-

clare a type directly aer the name, before the equals sign, it is assumed by the compiler to be an auxiliary

variable. In other words, the definition of “delay” in figure 5.1 is equivalent to ‘delay aux = 2 ‘minutes‘’.

e delay declaration also introduces the syntax for units. Units come aer an expression or a variable

declaration. Because units themselves may be expressions, such as ‘Rabbits/m²‘, it is necessary to have a

way to clearly delineate where equations end and units start. In Boosd backticks are used to mark the start

and end of unit equations.

Defining a stock is done by specifying equations for a number of named initialization parameters. In the

bathtub example, we use two of them, outflow and initial. outflow, biflow, and inflow parameters are
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Bathtub1

to drain

tub

delay

1 Bathtub1 model {
2 delay = 2 ‘minutes‘
3 to_drain flow = bathtub / delay
4 bathtub stock = {
5 outflow: to_drain
6 initial: 500 ‘liters‘
7 }
8 }

Figure 5.1: Bathtub1 model definition

optional, and a stock initialization may contain multiple outflows, inflows and biflows. e initial pa-

rameter is required, and each stock initialization must contain an initial expression.

5.3.1 Main model

Because each modeling project (group of files) can define a number of models, it is necessary to have a

mechanism to decide which model to run when simulating the project. By convention, this is the model

named main. To run our Bathtub1 model, we would define a main model with a single instance of the

Bathtub object, along with specifications of how long the model should run for, as in figure 5.2. e

creation of an instance of the bathtub model is the same as initializing a stock, with the difference that the

Bathtub1 class name appears directly before the opening curly brace (‘{’) and the initialization parameters

are different. In the case of this model of a bathtub, there aren’t any initialization parameters needed.

Time is a special variable in Boosd. It can only be defined in the main model, to avoid confusion about

when the simulation should start, end and at which time step (dt) the model should run. It is initialized
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main (Bathtub project)

bathtub

Bathtub1

1 main model {
2 time = {
3 start: 0 ‘minutes‘
4 end: 60 ‘minutes‘
5 dt: .5 ‘minutes‘
6 save_step: 1 ‘minute‘
7 }
8
9 bathtub = Bathtub1{}

10 }

Figure 5.2: Main model: Bathtub1 model usage

as if it were a stock, but with the four named parameters start, end, dt, and save_step. Save step is used

in a similar manner to the Vensim modeling soware; it allows the model to be run with a small dt, while

limiting the amount of data recorded for analysis.

5.3.2 Model with required parameters

Its oen both convenient and useful for re-usability to be able to specify parts of a submodel, like delay

times and initial values, when creating an instance of it. e Bathtub1 model could be reformulated as in

figure 5.3, with three things changed. e equation for delay has been removed, the unit for delay has

been moved to directly aer the variable name, and a new variable initial has been added with liters for

units.

Figure 5.3 shows the addition of the initial variable, and the outlines of both initial and delay’s circle

symbols has turned red. is highlights the fact that these variables need to be specified when an instance

of the model is created. In a model, any variables that do not have equations must be given a value at

40



initialization time, similar to how the initial value must be specified for a stock. In the Bathtub2 model,

delay and initial must be specified (initialized) when creating a new instance. e revised main model

which fully initializes Bathtub2 is shown in figure 5.4.

Bathtub2

to drain

tub

delay
initial

1 Bathtub2 model {
2 delay ‘minutes‘
3 initial ‘liters‘
4 to_drain flow = bathtub / delay
5
6 bathtub stock = {
7 outflow: to_drain
8 initial: initial
9 }

10 }

Figure 5.3: Bathtub2 model, with required parameters

5.3.3 Dynamo macro-like models

By making the creation and use of models a first-class feature of the language, it makes it trivial to imple-

ment the built-in Dynamo macro functions like SMOOTH3I and DELAY1. e Boosd language uses

the same convention as Dynamo [Richardson and Pugh, 1988]: by giving a variable in a model the same

name as the model itself, referencing an instance of the model gives you the value of that variable for that

instance.

e Smooth3i and Smooth3models are good illustrations of this. Figure 5.5 shows a typical implementation

of Smooth3I3: there are 3 stocks and 3 biflows representing the goal/gap nature of the exponential smooth.

3is is the formulation used in both the Stella and Vensim reference manuals.
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main (Bathtub project)

bathtub

Bathtub2

1 main model {
2 time = {
3 start: 0 ‘minutes‘
4 end: 60 ‘minutes‘
5 dt: .5 ‘minutes‘
6 save_step: 1 ‘minute‘
7 }
8
9 bathtub = Bathtub2{

10 initial: 500 ‘liters‘
11 delay: 2 ‘minutes‘
12 }
13 }

Figure 5.4: Main model: Bathtub2 model usage
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e three required parameters for Smooth3i are initial, input, and delay.

Smooth3i

delay

change in 3

smooth3i

change in 2

level 2

change in 1

level 1

input
initial

1 Smooth3I model {
2 input
3 initial
4 delay ‘time‘
5
6 change_in_1 = (input - level1)/delay
7 change_in_2 = (level1 - level2)/delay
8 change_in_3 = (level2 - smooth3)/delay
9

10 level1 stock = {
11 biflow: change_in_1
12 initial: initial
13 }
14
15 level2 stock = {
16 biflow: change_in_2
17 initial: initial
18 }
19
20 smooth3i stock = {
21 biflow: change_in_3
22 initial: initial
23 }
24 }

Figure 5.5: Smooth3I model implementation

e final stock in the cascade is named smooth3i, the same name as the model. is allows users to assign

an instance of the Smooth3I model to a variable, and simply reference that variable’s name to get the value

of the smooth3i stock, as you would with the SMOOTH3I Dynamo macro or any of the smooth built in

functions in the existing graphical tools.
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5.4 Inheritance

A key feature of the Boosd language is model inheritance. Models can declare that they specialize, or sub-

class, anothermodel. emodel that a class specializes is called its parentmodel, or superclass. When sub-

classing, amodelmay add additional structure (variables), aswell as redefine equations of existing variables.

is equation redefinition is analogous to method overriding in object-oriented programming languages.

Figure 5.6 shows subclasses the Bathtub2 model and adds an inflow.

Bathtub With Inflow (Bathtub2)

from plumbing to drain

tub

delay
initial

1 BathtubWithInflow model specializes Bathtub2 {
2 from_plumbing flow = 2 ‘liters/minute‘
3 bathtub stock = {
4 inflow: from_plumbing
5 outflow: to_drain
6 initial: initial
7 }
8 }

Figure 5.6: Bathtub With Inflow model, subclass of Bathtub2

e new BathtubWithInflow model overrides the equation for the main stock of the Bathtub2 model. e

new equation adds a single new inflow, the value of which is two liters per second. When created, Bath-

tubWithInflow instances still need the same initial and delay parameters of the parent Bathtub2 model;

they are inherited from the parent model.

Something to note is that Boosd makes a clear distinction between functions, like if_then_else, and com-

mon models that contain state, like Smooth. When using models, such as for information and mate-

rial delays, they must be initialized on their own, not as a value in an equation. Writing, nput:a_stock;
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delay:3apparent = 2 * Smoothi would give an error, while nput:2*a_stock; delay:3apparent = Smoothi

would not. ‘Hiding’ model structure inside of equations limits the ability of visual tools to navigate

through the model structure, so it is simply not allowed.

5.4.1 Smooth3

e Smooth3 model is a subclass, a specialization of Smooth3i. e only difference between the two models

is that Smooth3 uses the input parameter as the initial value of the stocks. Figure 5.7 clearly illustrates this.

e structure inherited from the parent model Smooth3i has grayed out variable names, representing the

fact that they haven’t changed. eonly variable that has changed is highlighted in blue; the value of initial

is now based on input. is change is also evident in the text-view of the model: the only equation that

needs to be specified for Smooth3 is initial = input, all of the other equations are inherited unchanged

from Smooth3i.

Smooth3 (Smooth3I)

delay

change in 3

smooth3i

change in 2

level 2

change in 1

level 1

initial
input

1 Smooth3 model specializes Smooth3I {
2 initial = input
3 }

Figure 5.7: Smooth3 model as a subclass of Smooth3I

A perhaps non-intuitive aspect of this Smooth3 subclass is that because no new variable named smooth3 (the
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name of the model) was added, a reference to an instance of Smooth3 in an equation will yield the value of

the Smooth3i stock, as it does for the parent model Smooth3i

In figure 5.8, the equation for perceived temp is Smooth3{input: shower_temperature; delay: 10}. is is

similar to how you would use the smooth3 function in Vensim, or smth3 in iSee soware, with the differ-

ence that in Boosd parameters like input and delay are named.

Figure 5.8 shows a simple goal/gap policy regulating the temperature of a shower. By having Smooth3 imple-

mented as amodel, perceived temp is clearly identified in the shower temperaturemodel as an information

delay, without the need for examining the equation or adhering to a particular naming convention for vari-

ables. Additionally, graphical soware could enable users to ‘zoom-into’ the Smooth3, figure 5.7, model by

clicking on perceived temp.

main (Shower Temperature proj.)

perceived

temp

Smooth3

delay

temp change

shower

temperature

temp goal

Figure 5.8: Shower temperature model with Smooth3

5.5 Interfaces

Figure 5.9 defines an interface named Water User. e visual representation may look out of place at first;

Water User is designed to present a consistent view (interface) of any model that has volumetric flows

named from plumbing and to drain, whether that is a model of a shower, bathtub, sink, washing machine,

greenhouse, or even a pool. In figure 5.9’s diagram, it does not show what is in between the from plumbing

and the to drainflows; in fact that is the point of an interface, to allow the use of amodel without knowing
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the specifics of it.

Water User

to drainfrom plumbing

1 WaterUser interface {
2 from_plumbing flow ‘liters/minute‘
3 to_drain flow ‘liters/minute‘
4 }

Figure 5.9: Water User interface

Figure 5.10 shows a model of water usage in a greenhouse, which happens to implement the Water User

interface. Water from plumbing is added to flower beds based on a particular watering policy. Once in the

flower beds, water either ends up in the atmosphere through evapotranspiration from flowers, or on the

floor due to over-saturation of the soil. Once the water is on the floor, it either evaporates or ends up in

the drain. Because the Greenhousemodel has a flow named from plumbing as well as one named to drain, it

implements the Water User interface and can be used anywhere a Water User is specified/called for.

Figure 5.11 is a model of the water usage in a house. It has an inflow from water source which represents

that house’s connection to a source of water, typically a water main or personal well. e House model has

an array of Water Userss, because each instance of a house has a varied number of different types of water

users. Finally, the model has an outflow named to septic, which aggregates the to drain flow of each

Water User instance. By using interfaces, we can represent the structure of water usage in most houses in

a single model: they get water from a single source, a variety of users around the house use that water and

eventually drain it into a central system, and that drain leaves the system of the house. Without interfaces,

creating a similar model would be either be awkward or impossible.
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Greenhouse

watering
policy

from plumbing

evapotranspiration

temperature
time of day

to drainto floor

water in
flower beds

evaporation
from floor

water on
floor

1 Greenhouse model {
2 // <equations omitted>
3 }

Figure 5.10: Policy-driven greenhouse model

Interfaces would be useful for the class of models that include multiple participants in a market. A typical

way of solving this problem involves arraying an entire sector, or view, of variables, including parameters.

Some parameters may be set to 0 to disable them for a particular index of the array. By using an array of

interfaces, what had previously been a ‘slice’ of the arrayed sector could be its own model, containing only

the parameters and structures required.

Figure 5.12 is the main model of this Housing Property project. In it, we create an instance of a house

with two water users: a bathtub and a greenhouse. e house instance is connected to a water main flow

from outside the boundaries of the property, and the house’s to septic outflow is connected to a stock

representing the property’s septic field.

5.5.1 Population Models

Polymorphism through interfaces enables approaches that were not easily feasible previously in system

dynamics, such as being able to quickly replace alternative formulations of model structure. A concrete

example is being able to choose which of several population submodels is used in a run of a larger model

of a national economy. e general requirements in this case are that the population submodels provide

standard indicators, such as total population and net migration, and can reference data from other parts
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House

bathtub

Bathtub1

bathtub

Bathtub1 to septicfrom water
source

water users

[]WaterUser

1 House model {
2 from_water_source ‘liters/min‘
3 to_septic ‘liters/min‘
4
5 water_users []WaterUser = {
6 from_plumbing: from_main
7 to_drain: to_septic
8 }
9 }

Figure 5.11: A house, with an array of Water Users

of the model, such as average life expectancy, to close the feedback loops.

For a detailed analysis intended for peers withmodeling experience, a populationmodel based on an aging

chainof yearly cohorts, brokenupby sex,might bemost appropriate. For policymakerswho aremore inter-

ested in the national model’s insights into tax formulation and government regulation, removing complex-

ity in other parts of the model could be desirable. In this case, a simple three-stock aging chain population

sector would be sufficient.

In this example, inheritance is not an effective strategy. e two different population submodels do not

share any significant structure; one centers on an array-based aging chain, the other on an explicit three-

stock one. Inheritance is appropriate when there is structure in one model that is extended or changed in

another, not simply when two ideas are conceptually similar.
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main (House Property project)

a house

House

a shower

Shower

a bathtub

Bathtub1

septic field

water main

1 main model {
2 time = {
3 start: 0 ‘minutes‘
4 end: 60 ‘minutes‘
5 dt: .5 ‘minutes‘
6 save_step: 1 ‘minute‘
7 }
8
9 // this defines the house’s maximum water usage rate

10 water_main flow = 100 ‘liters/min‘
11
12 a_bathtub = BathtubWithInflow{
13 initial: 500 ‘liters‘
14 delay: 2 ‘minutes‘
15 }
16
17 a_greenhouse = Greenhouse{}
18
19 a_house = House{
20 from_main: water_main
21 water_users: (a_bathtub, a_greenhouse)
22 }
23
24 septic_field stock = {
25 inflow: a_house.to_septic
26 initial: 0 ‘liters‘
27 }
28 }

Figure 5.12: A piece of property containing a house
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Population

deathsbirths

labor force

youth population

total
population

1 Population interface {
2 births flow ‘Individuals/time‘
3 deaths flow ‘Individuals/time‘
4
5 total_population ‘Individuals‘
6 youth_population ‘Individuals‘
7 labor_force ‘Individuals‘
8 }

Figure 5.13: An interface to population models

Advanced Population

labor force

youth population

per capita
GDP

deaths

migration

births

adult literacy rate

per capita
income

access to
healthcare

total
population

[Ages]

access to
clean water

1 AdvancedPopulation model {
2 // <details omitted>
3 }

Figure 5.14: An advanced formulation of a population model with policy symbols, indicating this popu-
lation model has 3 sub-models: births, deaths and migrations.
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Simple Population

birth rate total population

youth

to adult

adult

to elderly

births

elderly
deaths

adult
deaths

youth
deaths

youth
labor

force
elderly

1 SimplePopulation model {
2 // <details omitted>
3 }

Figure 5.15: Simple population model
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Chapter 6

e object-oriented modeling process

Modeling with an object-oriented approach takes a much more top-down approach than is usually found

in systemdynamics. is chapterworks through the application of the object-orientedmodeling paradigm

to a moderately-sized system dynamics project. Because system dynamics takes a strongly visual approach

to specifyingmodel structure, this chapter occasionally refers to actions theuser of a hypotheticalmodeling

programwould take in that (hypothetical) program. is is necessary to give the reader a sense of the actual

object-oriented process, as opposed to simply staying at the conceptual level.

e example used is a version of theMillennium Institute’sreshold 21 (T21)MinimumCountryModel

(MCM), a simplified version of the full T21 model [Kopainsky et al., 2010, Pedercini et al., 2007, Ped-

ercini, 2007]. Here, theMCMwill be built andparameterized for a fictional but prototypicalWestAfrican

nation named Zambaqui. Zambaqui was created for use in the GEO-SD 321 course, “Model-based So-

cioeconomic Planning”, at theUniversity of Bergen. It is introduced as a prototypicalWest African nation

facing a number of challenges in three sectors: society, economy and the environment. ese challenges

are shown in table 6.1. Given this problem formulation, it is natural to start the model with a similar

structure.

Figure 6.1 shows a new mainmodel for the Zambaqui project with three submodels: society, economy, and

environment. So far, the system dynamics model corresponds directly to the conceptual structure of the
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Challenge Goal by 2030
Society
Low Life Expectancy Life expectancy > 60 years
Low Literacy Rate 100% Literacy Rate
Low Access to Health Care 100% Access to Health Care
Poor Infrastructure Double roads’ density
Economy
Low GDP Growth rate Above 5%
High Aid Dependence Grants < 10% of total revenue
Low PC Income Double PC income
High Debt Debt/GDP < 50%
Environment
High deforestation Preserve Core Forests (6 Millions Ha)
Increasing energy price Energy price below 15,000 ZQ87/Barrel
Increasing CO2 emissions Fossil fuel GhG emissions reduced to 2000 level

Table 6.1: Challenges and goals faced by Zambaqui.

main (Zambaqui project)

society

environment economy

Figure 6.1: Start of main Zambaqui model
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model.

With an object-oriented approach, the model for Zambaqui will be constructed by starting at this top

level and creating one sector at a time, starting with society. In the society model, submodels for popu-

lation, education and healthcare will be added, one at a time. Initially each submodel will be created and

initialized in equilibrium [Sterman, 2000]. Once in equilibrium, these submodels will be connected to-

gether inside the society model to enable intra-sector feedback. Finally, once the society, economy and

environment models are complete and initialized independently, they will be connected together in the

main model to enable inter-sector, higher level feedback loops, such as that between energy price→GDP

→ energy demand→ energy price.

is is the basic object-oriented approach – start at a high level, drill down to the level of policy structure

diagrams, then work back up, connecting sectors together on the way up:

1. Outline the high level structure (set of submodels).

2. Focus on one submodel, outlining its structure.

3. Repeat until at the level of a policy structure diagram.

4. Create individual policy structure diagrams containing stocks, flows and policies (policies being

models themselves, representing functions that take a number of informationflows and yield a single

policy value)

5. Once policy structure diagrams are created and initialized in equilibrium, they can be connected

together in the parent model, enabling feedback loops between model components.

6. Similarly, once individual submodels are complete, they can be connected to other submodels in

the parent model’s diagram to enable higher level feedback between submodels.
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6.1 Declaring new model types

In a modeling tool supporting object oriented system dynamics, when adding subsystem symbols to a dia-

gram, these symbols can be of a specific model type (useful when working in a well-defined problem space

with a library of relevant models), or submodel symbols of ‘no type’, with the intent of specifying the type

at a later time, before simulation. Symbols of subsystems with no type, like those of the high level sectors

in Zambaqui shown in figure 6.1, are similar in concept to how auxiliary variables are created in Vensim.

An auxiliary variable may turn out to be a constant, a lookup table, an external data reference, or simply an

auxiliary variable; when adding a new auxiliary variable to a page its specific type isn’t knownuntil entering

the equation. In this situation the auxiliary variable is said to be under-defined.

main (Zambaqui project)

society

environment economy

associate 'society' with existing model

create a new 'society' model

create a new 'society' interface

associate 'society' with existing interface

Figure 6.2: Creating a new model for the society sector

Right clicking on the society symbol, as seen in figure 6.2, displays a contextualmenuof actions to perform

on the under-defined society model instance. Since we do not have an existing model of the Zambaqui

society, the best action is to select “create model for ‘society’ ”. e model instance’s name, society, refers

to this particular instance of a model; the new model of a society that is being created needs to have its

own name specified. To reduce ambiguity in the following discussion, we will prefix Zam to model names

– the societal model will be named ZamSociety. Figure 6.3 shows the new, blank diagram representing

ZamSociety’s structure.
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ZamSociety

Figure 6.3: Empty ZamSociety model

Aer performing the “create model for ‘society’ ” action, the society variable in the main model is asso-

ciated with an instance of the ZamSociety model. e ZamSociety model, with an empty model diagram,

does not require any particular initialization parameters, so society is fully defined and able to be simu-

lated, even though it will not be able to produce any meaningful data. Consequently the border color for

society has changed from red to black, as seen in figure 6.4.

main (Zambaqui project)

environment economy

society

ZamSociety

Figure 6.4: Main Zambaqui model with society fully defined
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At this point in the object-oriented modeling process, attention is focused on the society model. At the

level of detail of the Minimum Country Model, the ZamSociety model consists of three submodels: one

each for population, healthcare and education. Each one will be defined and initialized in turn. Adding

population to the ZamSociety model yields figure 6.5a. Similarly to how ZamSociety was created in fig-

ure 6.2, right-clicking on population yields the contextual menu seen in figure 6.5b.

ZamSociety

population

(a) Society model with population added

ZamSociety

population

associate 'population' with existing model

create a new 'population' model

create a new 'population' interface

associate 'population' with existing interface

(b) Creating a new model for the population submodel

Figure 6.5: Creating and defining the population submodel

6.2 Defining new models

e model class behind the population instance is named ZamPopulation, and its definition is shown in

figure 6.6. e original formulation of the population sector is given in figure B.1 in appendix B. Of note

are the policy symbols for births and average life expectancy in figure 6.6. Compared to the original

formulation, much of the complexity of the population sector is moved into the two policies, leaving the

4-stock aging chain as the majority of the ZamPopulation diagram. Adult literacy rate, real per-capita GDP

and access to basic healthcare are all required parameters for the population model. In the completed

Zambaqui model, these values will come from other model sectors. For initializing the ZamPopulation

model in equilibrium, they can simply be given constant values in the ZamSociety’s population equation, as

in figure 6.7.

58



ZamPopulation

births

adult literacy rate

real per
capita GDP

access to
basic healthcare

avg life

expectancy

infant
death rate

youth
death rate

adult
death rate

elderly
death rate

total population

elderly
migration

adult
migration

youth
migration

becoming
school age

infant
migration

becoming
adult

becoming
elderly

infant
deaths

infant

population

youth
deaths

adult
deaths

elderly
deaths

youth

population

adult

population

elderly

population

net migration rate

Figure 6.6: ZamPopulation model details

ZamSociety

population

ZamPopulation

1 ZamSociety model {
2 population = ZamPopulation{
3 adult_literacy_rate = .2
4 real_per_capita_gdp = 88000 ‘zq87/person‘
5 access_to_basic_healthcare = .05
6 }
7 }

Figure 6.7: Society sector with fully defined population model
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Figure 6.8 shows the details of the births policy. e diagram clearly highlights the single delay structure,

a first order smooth named perceived real per capita GDP.

Births

real per
capita GDP

births

fertile period

adult population

sexually active females

proportion of sexually
active females in
adult population

total fertility rate

elasticity of
contraceptive prevelance
to literacy rate

relative
literacy rate

average adult
literacy rate

initial adult
literacy rate

contraceptive
prevalance

desired fertility rate
natural fertility rate

initial
contraceptive
prevelance

elasticity of fertility
rate to income

initial desired
fertility rate

relative real
per capita GDP

perceived real 

per capita GDP

Smooth1I

initial real per
capita GDP

time for income 
changes to affect
life expectancy

Figure 6.8: Births policy structure model details

With the populationmodel specified, the next step is to implement the education sector of the Zambaqui

society, shown in figure 6.9. e education sector is formulated somewhat differently from the popu-

lation sector. With population, there were three auxiliary variables that were required parameters. e

ZamEducation model has no required auxiliary variables, but instead contains a required Economy interface

along with a required Population interface. e distinction of when to require an interface vs. when to use

several required parameters is somewhat fluid and le to the modeler. In general, if several variables are

required from a different submodel it is usually preferable to directly reference that submodel or use an

interface.

Also new in figure 6.9 is the introduction of the thick black line coming from a model instance. is

indicates the target of the thick line uses several variables from that model. In the case of average adult

literacy rate, both population.adult_population and population.elderly_population are referenced.
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Figure 6.9 shows how entrance rate is a function of youth population, the completion rate, and the econ-

omy. is view of the ZamEducation model does not show exactly which part of the economy the entrance

rate depends on, but it also omits the details of how the youth population influences the entrance rate.

Investigating further would simply be a matter of double clicking the entrance rate symbol to bring up

the diagram for the entry rate policy (not pictured).

ZamEducation

entrance

rate

average adult
literacy rate

dropout
fraction

youth
population

completion
rate

becoming
adult

becoming
elderly

dropout
rate

students

adult
deaths and
migration

elderly
deaths and
migration

young

literate

literate

working age

literate

elderly

economy

Economy

population

Population

Figure 6.9: Education model, which requires references to population and economy submodels

e Economy and Population interfaces are the first two interfaces used in the Zambaqui project. ey

are declared as interfaces, as opposed to direct references to the ZamPopulation and ZamEconomy submodels,

because it is desirable to be able to test the educationmodel in isolation from the population and economic

models. In this case, the economic model is not going to be developed until later in the project; being able

to provide an alternate economic model for testing is important to keep the model simulatable.

e Economy interface is defined in figure 6.10. is interface is simple –what is required from the economy

is to provide information about key indicators like real per capita GDP, and access to the government

subsector. e government interface (not pictured) is expected to provide information about expenditures

for healthcare and education.

e Population interface is also shown in figure 6.10. It defines a subset of the structure in ZamPopulation,
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allowing us to test against a TestPopulation model (not pictured) that implements this interface without

changing the formulation of ZamPopulation.

Population

adult deaths

elderly deaths

births adult population

youth population

elderly population

total population

adult

migration

elderly

migration

Economy

real per
capita GDP

per capita real
disposable income

GDP deflator

government

GovernmentI

total factor
productivity

Figure 6.10: Interfaces to the economic and population sectors of the model.

In order to initialize and test the education sector in isolation, a model that satisfies the Economy interface

must be used. For this purpose we can create a simple stand-in economymodel, called the TestEconomy, de-

picted in figure 6.11. is model simply has constant values for each relevant indicator based on historical

data. It also references a TestGovernment model (not pictured), which is formulated similarly.

With TestEconomy and TestPopulationmodels, the educationmodel canbe initialized in equilibriumalong-

side ZamPopulation model in ZamSociety. Figure 6.12 shows this. Both a variable named education, of type

ZamEducation, and a variable named economy, of type TestEconomy have been added. e TestPopulation in-

stance would simply be specified in the equation that initializes ZamEducation, not as a separate piece of

model structure.

6.3 Enabling inter-model feedbacks

Once both the population and education models have been shown to behave reasonably in isolation, they

can be made to depend on each other, as in figure 6.13. At this point there is now a feedback loop be-

tween the population aging chain and the literacy aging chain, through adult literacy rate and youth

population.

Once the ZamHealthcare model is created and parameterized, it can be connected to the population sector
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TestEconomy
real per
capita GDP

per capita real
disposable income

GDP deflator

government

TestGovernment

total factor
productivity

1 TestEconomy model {
2 real_per_capita_gdp = 88000 ‘zq87/person/year‘
3 per_capita_real_disposable_income = 92000 ‘zq87/person/year‘
4 gdp_deflator = .6 ‘zq/zq87‘
5 total_factor_productivity = 1
6 government = TestGovernment{}
7 }

Figure 6.11: A test implementation of the economy – for use when initializing submodels that require an
instance of a model that satisfies the Economy interface.

ZamSociety

population

ZamPopulation

education

ZamEducation

economy

NullEconomy

Figure 6.12: Society with population and education, both initialized in equilibrium
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ZamSociety

population

ZamPopulation

education

ZamEducation

adult literacy
rate

economy

NullEconomy

Figure 6.13: Society with population and education, with feedbacks connected

as in figure 6.14. At this point, all of the subsectors of the societal model have been created, along with

their intra-society feedback loops. e only thing le for the ZamSociety model is to remove the explicit

use of the TestEconomymodel, substituting a required Economy parameter, and having the populationmodel

depend on the economy. is is shown in figure 6.15.

Both the ZamEconomy and ZamEnvironmentmodels are created in the same fashion. Once they have been cre-

ated and tested in isolation, the final step of connecting the feedback loops between the society, economy

and environmental models can be performed. e final model is shown in figure 6.16. is model shows

clearly the high level linkages that exist between the three sectors.
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education
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adult literacy
rate
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ZamHealthcare
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economy

NullEconomy

Figure 6.14: Society with population, education and health sectors
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ZamSociety

education

ZamEducation

adult literacy
rate

health

ZamHealthcare

access to basic 
healthcare

total population

economy

Economy

real per
capita GDP

population

ZamPopulation

1 ZamSociety model {
2 economy Economy
3
4 population = ZamPopulation{
5 access_to_basic_healthcare: health.access_to_basic_healthcare
6 adult_literacy_rate: education.adult_literacy_rate
7 real_per_capita_gdp: economy.real_per_capita_gdp
8 }
9

10 health = ZamHealth{
11 total_population: population.total_population
12 economy: economy
13 }
14
15 education = ZamEducation{
16 population: population
17 economy: economy
18 }
19 }

Figure 6.15: Society connected to the economy
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main (Zambaqui project)

environment

ZamEnvironment

economy

ZamEconomy

society

ZamSociety

1 main model {
2 society = ZamSociety{
3 economy: economy
4 }
5 economy = ZamEconomy{
6 society: society
7 environment: environment
8 }
9 environment = ZamEnvironment{

10 society: society
11 economy: economy
12 }
13 }

Figure 6.16: Completed Zambaqui main model
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Chapter 7

Discussion

Object-orientation is a useful and interesting addition to the system dynamics paradigm. It has the poten-

tial to improve the understanding of larger models and enable innovative features in modeling environ-

ments. e object-oriented approach described here is similar but distinct from previous approaches, in

particular from the object-oriented modeling approach described in Myrtveit [2000]. Additionally, there

are some interesting future directions this research could take, such as integrating the ability to usemodels

in an agent-based environment.

7.1 Improving understanding

isobject-oriented approachhas the ability to improve people’s understanding of larger dynamic systems.

Part of this improvement is due to a better management of complexity, but part is also simply due to the

change in paradigm object-orientation adds.

68



7.1.1 Paradigm

Approaching amodeling project with an object-oriented view can yield quite different results than starting

out with a stock and flow approach. While different, the paradigm is not without precedent.

One prominent systemdynamics textbooks emphasize approachingmodeling problems by identifying at a

high level the sectors involved, and at amore detailed level focusing on the distinct policy decisions [More-

cro, 2007]. Only once the important policy decisions have been identified, along with the information

each policy depends on, are the details of each policy formulation laid out in a separate diagram. is is

the same approach taken in chapter 6, with a major difference being that the information required from

other sectors in the formulation of rates and policies is formalized by creating interfaces to those sectors.

Switching paradigms places a burden on system dynamicists – if modelers are not currently using an ap-

proach similar to that in Morecro [2007], it requires a retraining in both the tools used and in model

conceptualization. is burden necessitates evaluating the usefulness of the approach: is the gain greater

than the effort spent retraining?

When evaluating the usefulness of this paradigm, there are two important aspects to keep in mind. e

first is the ease of constructing themodel – does it actually take less time to construct complicatedmodels?

Enabling the easy reuse of components from previous projects, along with the decrease in complexity by

defining the model in a hierarchical way, would suggest that there is a real potential to increase the pace of

model development and iteration.

e second factor to evaluate is the ease in communicating models to the client. At a high level, object-

oriented models resemble a block diagram, an approach that has been advocated for disseminating model

results [Baker and Mullen, 2000]. Similarly, reducing the amount of information on lower-level diagrams

by focusing on policies would seem to be something that can improve clients understanding of model

structure. Both of these claims are important areas for future research and validation.
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7.1.2 Composition

Building a system dynamics model visually is an exercise in composition. e modeler starts off with a

blank page, and combines stocks, flows and auxiliary variables until they have composed a model which is

able to address their dynamic hypothesis. Functions like smooth3 and delayn have long been used to more

easily composemodels – andwhenmodels were createdwithDYNAMOmacros were regularly employed

to reuse common pieces of domain-specific model structure. An object-oriented modeling approach is a

natural extension of this. It would be a barrier for modelers if they had to cut and paste the structure for a

third order smooth into amodel and relabel each stock every time theywanted to use an information delay.

Similarly, changing between a first order and third order smooth function is simply a matter of changing

a single function call in one equation without the need to edit the model diagram. An object-oriented

approach to modeling simply extends this line of thinking.

7.2 Comprehensiveness

ere is a potential problem that ariseswith creatingmodels in a hierarchicalmanner: identifying feedback

loops. In figure 6.13, it is not possible to tell if there is actually one or more feedback looks between the

population and economy sectors just by looking at thediagram for ZamSociety– it is possible that indicators

from the two models are used in the other’s formulation, but not in a way that creates dynamic feedback.

Of course, this same criticism applies to tools likeVensimwhich split up a largermodel into different views,

relying on shadow variables to connect feedback loops between model sections.

A visual modeling tool that implements the object-oriented approach defined here could enable the user

to select an inter-model link and highlight any other links that are involved in related feedback loops. An

example is shown in figure 7.1. Here, the user highlights the adult literacy rate link from the education

sector and the modeling tool highlights that there is in fact a feedback loop between the two sectors.
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education

ZamEducation

adult literacy
rate

health

ZamHealthcare

access to basic 
healthcare

total population

economy

Economy

real per
capita GDP

population

ZamPopulation

Figure 7.1: ZamSociety model with an inter-submodel feedback loop highlighted.

7.3 Libraries

As noted inMyrtveit [2000] andHines et al. [2011], a big appeal of an object-oriented approach to system

dynamics is that it would enable a natural way to construct libraries of reusable structure. is structure

could be both generic, like the smooth and delay families of functions, as well as specific to different prob-

lem areas. Individual modelers, modeling teams, and the community in general could build and manage

libraries, sharing or selling access as needed, similar as to how soware libraries have grown to prominence

in the soware development world.

7.4 Programs and tooling

Object-oriented system dynamics has the potential to allow system dynamics tools to work better. An

object-oriented, hierarchical model naturally encodes more information about the structure of a model,

and with more information modeling programs are able to do more detailed analyses. For example, auto-
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matic casual loop diagrams are not currently generated in most soware programs, partly because causal

loops identified in a flat model are more verbose than necessary. In many cases submodel diagrams more

closely represent the level of detail required for a causal loop diagram; its not hard to imagine a tool which

allows you to select several submodels and generate a diagram with some or all of those model’s causal

loops shown. Because the CLD would be generated by the modeling tool, it could automatically be kept

in sync with any variable name or structural changes.

7.4.1 Execution

Developing models in an object-oriented approach enables two possible approaches to the execution of

model simulations. e first approach is to flatten the model out into a single, ordered list of equations.

e second approach is to, internally to the modeling tool, mirror the visual representation of objects and

simulate the model by having each submodel individually simulate itself, asking other submodels for data

where appropriate. is is similar to how some object-oriented languages, like Smalltalk, work. e first

approach, flattening out themodel, tradesmore upfront time spent ordering and flattening themodel for a

potentially faster simulation, which could be usefulwhendoing optimization runs or simulating themodel

in response to user input. e second approach, simulation throughmessage passing, has less upfrontwork

but is less efficient than simply iterating through a list of equations. Whichever approach is taken is largely

an implementation detail, as both should yield the same results.

7.4.2 Cut the loop

Both when initializing a model as well as when analyzing it, it can be beneficial to be able to isolate sub-

models from each other, cutting the feedback loops between them. With a object-oriented model, this is

easily done by modifying the model containing the submodel instances that are to be isolated. is was

illustrated when initializing the ZamEducation model in section 6.2. Switching the education model from

using the static test inputs in TestPopulation to the dynamic results generated by the population instance
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of ZamPopulation is a matter of changing the equation initializing education. is makes it easier to go

back into the model later on and re-isolate individual submodels in order to investigate where interesting

behavior is coming from.

7.5 Future directions

ere are a number of exciting future directions this work opens up. e most immediate is simply imple-

menting the concepts laid out here in a modeling tool. is would enable the testing and refinement of

the claims and techniques that have been introduced in this thesis. is is probably the most important

and immediate next step.

7.5.1 Agent-based modeling

With hierarchical models that can conform to interfaces, models end up supporting everything needed

to implement agents for use in agent based models. e major difference between agent-based modeling

and system dynamics is the focus. Typically agent-based models focus on modeling how individuals in

a population act, while system dynamics focuses on modeling the aggregate population and its average

behavior over time.

However, there is no reason the individual agent cannot be specified as a system dynamics model. e

Anylogic modeling tool supports a form of this already. If modeling a number of similar types of agents,

you could have a base-agent model, and a number of model subclasses which change small parts of the

structure of the agent. Similarly, if there are a number of dissimilar agents interacting in a commonway, as

long as each different agentmodel implements the common interaction interface all the agents can interact

through the same mechanism.
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7.6 Conclusion

is thesis introduces object-oriented system dynamics modeling as a way to manage the complexity that

arises in large models. Object-oriented concepts and techniques, such as composition, inheritance and in-

terfaceswere introduced and related to existing approaches and research in the systemdynamics field. Next

an adaptation of these concepts was introduced with example diagrams, symbols and equations. To show

how the these techniques and tools could be applied, chapter 6 walked-through how the T21 Minimum

Country Model could be developed for a hypothetical country in an object-oriented manner.
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Appendix A

Reference key for Object-oriented system

dynamics diagrams

A.1 Model and interface declarations

Models, including policy diagrams, and interfaces are defined in boxes with rounded corners, featuring

their names in the upper le corner, followed by a solid line with the diagram defining themodel below it.

Figure A.1 illustrates the definition of a model named Model Name with an empty definition (no equations

or model structure). e same figure also shows what it looks like when one model inherits from a model

named parent and how interface definitions are distinguished by italicized text.

A.2 Standard interface components

Figure A.2 shows the standard components that can be used inside model diagrams. e first three are the

common flow, stock and auxiliary variables derived from Forrester [1961]. Next is a triangle, symbolizing

a lookup table. e an instance symbol denotes an instance of the ClassName model [Morecro, 1982].

e next two symbols represent policy-governed flows, and stand-alone policy models. ese symbols
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Model Name

Interface Name

Model Name (Parent Name)

Figure A.1: Model definitions

flow

stock

policy-
governed

flow

another instance

InterfaceName

auxiliary
variable

an instance

ClassName

policy
model

lookup
table

Figure A.2: Diagram symbols
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denote instances of models that represent specific policies, and by convention only take information links

as input (as opposed to flows), and provide a single output. Policies are defined exactly the same way as

other models – it is simply their visual representation when referenced in other models that is different.

e final symbol, for another instance is the designation for something that implements a given interface.

Interfaces are discussed in detail in section 5.5. Interfaces provide a consistent view into a range of (poten-

tially disparate) models – they list the indicators and outflows those models provide and define standard

inflows and parameters the models may require.

A.3 Standard connectors

ere are three types of connectors for use in object-oriented systemdynamics diagrams, only one ofwhich

is relatively novel. We use the term ‘sink’ to denote the variable pointed to by the connector, and the term

‘source’ to identify the variable the connector originates at.

(a) Information link (b) Multi-link from model (c) Flow

Figure A.3: Standard diagram connectors

e first connector is that of figure A.3a – the information link. is denotes simply that the source of the

connector is used in the formulation of the variable at the sink of the connector. When information links

originate at model instances, they may be named based on the variable they originate at. For example, a

link originating at an instance of ZamPopulation, presented in chapter 6, that refers to the Total Population

variable may be labeled ‘Total Population’. e second type of connector is the multi-link of figure A.3b.

e multi-link can only originate at an instance of a model or interface. It denotes the fact that more than

one information link or flow from the sink is referenced by the source variable. e third type of connector

is that of figure A.3c – the standard flow connector. is denotes a flow entering or leaving a stock.
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A.4 Colors

ere are 4 different colors that are used to convey different types of information in a Boosd diagram, as

you can see in figure A.4. e color black is used for most new structure in a model diagram, indicating

that the structurewas added in the current diagram. If the currentmodel diagram inherits structure from a

parentmodel, information links and variable names will be grayed to indicate that these pieces of structure

exist, but didn’t originate in, the current model. Similarly, if a piece of structure is inherited and changed

in the current model, its name (and any related information flows) will be turned blue. Finally, a variable

that is red is indicating that it does not have an equation. A value is required to be provided during model

initialization, or by overriding that variable’s equation in a subclass.

standard new

structure

(a) Black - new structure

equation
inherited
unchaned

(b) Gray - inherited
structure

changed from
parent model

(c) Blue - subclass-specific
structure

required
parameter

required interface

InterfaceName

(d) Red - required parameters

Figure A.4: Diagram color key
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Appendix B

Original sector diagrams for Zambaqui
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Figure B.1: Original population sector formulation, from Pedercini [2011]
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Figure B.2: Original education sector formulation, from Pedercini [2011]
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Appendix C

Boosd grammar definition

e following is the formal grammar definition for Boosd, presented in the modified Backus–Naur Form

(BNF) that the UNIX yacc command uses.

1 file: imports

2 kinds

3 defs

4 ;

5

6 imports:

7 | imports import

8 ;

9

10 import: YIMPORT lit ’;’

11 ;

12

13 kinds:

14 | kinds kind

15 ;

16

17 kind: YKIND id_list opt_kind ’;’

18 ;

19

20 opt_kind:
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21 | YKIND_DECL

22 ;

23

24 id_list: ident

25 | id_list ’,’ ident

26 ;

27

28 defs:

29 | defs def

30 ;

31

32 def: ident top_type opt_kind specializes ’{’ stmts ’}’ ’;’

33 ;

34

35 top_type: YMODEL

36 | YINTERFACE

37 ;

38

39 specializes:

40 | YSPECIALIZES ident

41 ;

42

43

44 stmts:

45 | stmts stmt

46 ;

47

48 stmt: var_decl ’;’

49 | var_decl assignment ’;’

50 ;

51

52

53 var_decl: ident opt_kind

54 | ident ident opt_kind

55 ;

56

57 assignment: ’=’ ’{’ initializers ’}’

58 | ’=’ ident ’{’ initializers ’}’

59 | ’=’ expr_w_unit

60 | ’=’ lit

61 ;
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62

63 initializers:

64 | initializers initializer

65 ;

66

67 initializer: ident ’:’ expr_w_unit ’;’

68 ;

69

70 expr_w_unit: expr opt_kind

71 ;

72

73 expr: ’(’ expr ’)’

74 | expr ’+’ expr

75 | expr ’-’ expr

76 | expr ’*’ expr

77 | expr ’/’ expr

78 | expr ’^’ expr

79 | ’-’ expr

80 | ident ’(’ expr_list ’)’

81 | table ’[’ expr ’]’

82 | ident ’[’ expr ’]’

83 | table

84 | ident

85 | number

86 ;

87

88 ident: YIDENT

89 ;

90

91 lit: YLITERAL

92 ;

93

94 number: YNUMBER

95 ;

96

97 expr_list: expr

98 | expr_list ’,’ expr

99 ;

100

101 table: ’[’ pairs ’]’

102 ;
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103

104 pairs: pair

105 | pairs ’,’ pair

106 ;

107

108 pair: ’(’ number ’,’ number ’)’

109 ;

Listing C.1: Boosd grammar

86


	Introduction
	Managing Complexity
	Overview

	Definitions
	Types
	Classes
	Objects

	Object orientation
	Encapsulation
	Inheritance and delegation
	Delegation

	Polymorphism
	Subclass polymorphism
	Interfaces
	Go


	Previous approaches in SD
	DYNAMO Macros
	Subsystem and policy diagrams
	Object-oriented extensions to system dynamics
	Construction through replacement
	Visual modeling tools


	Methods
	Vocabulary
	Instances vs. Models

	Projects
	Models
	Main model
	Model with required parameters
	Dynamo macro-like models

	Inheritance
	Smooth3

	Interfaces
	Population Models


	The object-oriented modeling process
	Declaring new model types
	Defining new models
	Enabling inter-model feedbacks

	Discussion
	Improving understanding
	Paradigm
	Composition

	Comprehensiveness
	Libraries
	Programs and tooling
	Execution
	Cut the loop

	Future directions
	Agent-based modeling

	Conclusion

	Reference key for Object-oriented system dynamics diagrams
	Model and interface declarations
	Standard interface components
	Standard connectors
	Colors

	Original sector diagrams for Zambaqui
	Boosd grammar definition

